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ABSTRACT 

Let X and Y,, l<=i<-k, be compact metric spaces, and let p~: X---* Y~ be 
continuous functions. The family F = {p~}~=~ is said to be a measure separating 
family if there exists some ~ > 0 such that for every measure p, in C(X)*, 
I1 ~°  O : '  II --> A II ~ II holds for some 1 < i _-< k. F is a uniformly (point) separating 
family if the above holds for the purely atomic measures in C(X)*. It is known 
that for k _-< 2 the two concepts are equivalent. In this note we present examples 
which show that for k ~ 3 measure separation is a stronger property than 
uniform separation of points, and characterize those uniformly separating 
families which separate measures. These properties and problems are closely 
related to the following ones: let A~, A: . . . . .  Ak be closed subalgebras of C(X); 
when is A~+A2+'"+Ak equal to or dense in C(X)? 

§1. Introduction 

L e t  X a n d  Y~, 1 _-< i < k, be  se ts ,  let  p~: X - - ,  Y., be  func t ions ,  a n d  let  A b e  a 

p o s i t i v e  rea l .  T h e  f ami ly  F -- {p~}~ is sa id  to  be  a A - u n i f o r m l y  s e p a r a t i n g  f a m i l y  

(A-u .s . f . )  if the  f o l l o w i n g  h o l d s :  fo r  e ach  p a i r  {xi}~'=~, {zi}~'=l of  f ini te  d i s j o i n t  

s e q u e n c e s  in X, t h e r e  ex is t s  s o m e  # in F so t ha t  if f r o m  the  p a i r  {p(xj)}~'=~, 

{p(zj)}7=~ of  s e q u e n c e s ,  we r e m o v e  a m a x i m a l  n u m b e r  of  pa i r s  of  e l e m e n t s  p (x j l )  

a n d  p(z~2) wi th  p(xj~) = p (z j : ) ,  a t  l eas t  An e l e m e n t s  wil l  r e m a i n  in e a c h  s e q u e n c e .  

( E q u i v a l e n t l y :  a t  m o s t  (1 - A )n  pa i r s  can  be  r e m o v e d . )  F is sa id  to  be  a u.s.f ,  if it 

is a A-u.s . f .  fo r  s o m e  A > 0. 

T h e  f o l l o w i n g  t h e o r e m  is p r o v e d  in [4]: 

1.1. THEOREM. The following properties are equivalent: 

(i) F is a A-u.s.f. 

(ii) For each lz in l~(X) there exists some l<=i<=K such that I lUo0?ff_-  > 

A tl If. 
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(iii) Each f in L(X)  admits a representation f (x)  = EL, g~(p,(x)) with g~ in 

l~(r,), IIg, II ~ (1/A)llfll (/2(x) is the Banach space of purely atomic measures on X 
with the total variation as the norm; tz opt-' is the measure on Y~ defined by 

p. op: '(A)=/~(p~-~(A)), A C Y~ ; L(X) is the space of bounded real valued 
functions on X with the sup norm). 

If X and Y, are compact metric spaces, and the p~'s are continuous, then F is 

said to be a A-measure separating family if for each real valued Borel measure/z 

in C(X)* there is some p, in F so that I1~ °P:'II--> A I1~ II. 
As in the discrete case we have (see [4]) 

1.2. THEOREM. F is a A-measure separating family if and only if each f in 

C(X)  admits a representation f(x)=E~=,g,(p,(x)) with g~ in C(Y~), IIg, 
(l/A)l lf l l .  

It follows that every measure separating family is a u.s.f. (with the same h). 

The main purpose of this paper is to study the inverse problem, i.e., when is a 

u.s.f, also measure separating? Obviously, if k = 1 (i.e., F consists of a single 

element) then the two properties are equivalent. In [4], p. 69, it has been proven 

that if k <_- 2 then, again, the two properties are equivalent, i.e., if F = {p~, p2} is a 

u.s.f, then it is measure separating. In this article we present an example of a 

family F = {pj, p2, p3} of continuous functions on some compact metric space X, 
1 which is a ~-u.s.f., but fails to separate measures in the strongest possible sense: 

there exists a Borel measure /z in C(X)* with I[/zl[=l and /z o p T ' = 0  for 

i = 1,2, 3. Thus, for k > 2, the two properties are no longer equivalent. We were 

able to construct this example after reading Marshall and O'Farrell 's paper [2] 

and, in particular, the example due to Havinson which is presented there. In that 

article the authors study the following problem: let A~, A2 . . . . .  A~ be closed 

subalgebras of C(X) (with 1 E A~, 1 =< i =< k), when is A, + A : + . . .  + Ak dense 

in C(X)? Clearly, every such A~ is of the form Ai = C(Y~) with Y~ a quotient of 

X. It follows from 1.2 that A, + A 2 + . "  + Ak = C(X)  if and only if the family 

F = {pj, p2 . . . . .  pk} separates measures, where p~ : X---> Yi is the quotient map. It 

is also evident that A~ +- • • + Ak is dense in C(X)  if and only if, for all/z # 0 in 

C(X)*, t z o p ~ O  for some l<=i<=k. From the results of Marshall and 

O'Farrell it follows, in particular, that when k =2 ,  every element /z in 

(A~ + A2) j is a w* limit of a sequence {/z,}~=, in l,(X) such that each /z, has a 

finite support, and 

!im (11 . opi 'If+ 11 . op2'll) = o. 
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From our example it follows that similar results cannot be obtained for k > 2. 

Indeed, the element /x in our example is in (A1+Az+A3f, but for any 

sequence {/,,} in I t (X)  which tends w* to /z, 

holds. (Actually the limsup is => 1, as will be seen later.) We present our 

example, in a general setting, in §2. In §3, we examine special cases with some 

additional properties, one with X C R 2 and real valued p~'s, and another in 

which X is connected. 

Once we know that a u.s.f, may fail to separate measures, it is of some interest 

to characterize those u.s.f.'s which do. This is done in §4, where we present a 

necessary and sufficient condition on a u.s.f, in order to be a measure separating 

family. We hope that it will be possible to apply this characterization to extend 

the results of Marshall and O'Farrell  to the case k _-> 3 in some meaningful way. 

§2. A u.s.f, which does not separate measures 

Let G be a compact metrizable uncountable topological group which contains 

two elements a and b that generate a non-abelian free group on two generators. 

Examples of such groups will be presented in §3. 

Let X be the disjoint union of two copies Go and G~ of G. Define p~: X---> G, 

i = 1,2, 3, as follows: 

[x x oo [x xEoo {xx oo 
p , ( x )  = p2(x)  -- p3(x)  - -  

xa, x E G~, x, x E G~, x, X E Gl 

(xa is the product of x and a, in the given order,  in the group G).  Set 

F = {pl, pz, ps}. We claim that F is a ~-u.s.f. on X but fails to be a measure 

separating family. The last statement is obvious: let ~, denote the Haar  measure 

on G, and set g =½(~,0- v~) where ~,, is v on Gi, i =0 ,1 .  Then II~ll= 1, and 

/ zop , '  = 0  for i = 1,2,3, since v is translation invariant. To  prove that F~ is a 

~-u.s.f. we argue as follows. Let H C G be the non-abelian free group generated 

by a and b. For w E G let w H  denote the coset {wu: u ~ H}. These cosets form 

a decomposition of G into disjoint sets. They also induce naturally such a 

decomposition on X. Indeed, for w E G set 

xw = wHo U wH~, where wH, is the coset w H  in Gi, i = 0, 1. 

This decomposition of X is respected by the three pi's, i = 1,2, 3, i.e., if X. and 
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Xw, u, w E G, are two different elements in the decomposition of X, then 

p~ (X,) f3 p~ (Xw) = •, since p~ maps X,. into wH, i = 1,2, 3. 

It follows that in order to prove that F is a ½-u.s.f., it suffices to show that the 

restriction of the elements of F to Xw for w E G satisfy the following: 

2.1. For every 77 E ll(Xw), Z~=,II'7 °(o,/Xw)-~ll>--lt'TII. 

(Note that 2.1 implies that F / X ,  is a -~-u.s.f. on X~, since from 2.1 it follows 

that 11,7 ° (0 , /xw)- '  ti--> 111,7 II for some 1 =< i <- 3.) 
Indeed, given some rt in l~(X), there exists a sequence {wk}~=l in G such that 

U~=l Xw~ contains the support of 77 (since the support of r / is  countable). Hence 

~/= E'~=l B / X ~ .  From 2.1 and from the fact that the O~'s map disjoint Xw's into 

disjoint sets, it follows that 

2.2. 

i = 1  i ~ l  = i = 1  k = l  

= ~ ~ll,71Xw~o(p, IX~,)-'ll>= ~ 11,7 /xJI  = 11,711. 
k = l  i = l  k = l  

From 2.2 it now follows that for some 1 < i =< 3, II '7 ° P: '  II -> 111'7 II, i.e., F is ½-u.s.f. 

Thus 2.1 actually implies a stronger property, namely 2.2, than just being a 

~-u.s.f. (This also explains the remark about the iimsup being => 1 in the 

introduction.) 

To prove 2.1 we shall need a lemma. 

2.3. LEMMA. Let ]: = {p,}~=~ be a family o]: [unctions on a set X. Ifl there exist 
subsets A~, A2 . . . . .  A~ of X, and r positive, such that 

(i) ]:or each x in X, Y.~=~ 1A,(x) >->_ r (i.e., each x in X is an element of at least r 
A, 's) .  

(ii) O, separates the points o]: A~, 1 <-_ i <= k (i.e., o,/A, is one to one on A~), 

then for each rl E l~(X), E ~  11,7 o p ?  II --> (2r - k)ll,7 II. 

PROOF. Let rl E I~(X) with 11'7 II = 1 be given. Then 1'71, the absolute value of 

77, is a probability measure on X. From (i) it then follows that 

2.4. 

¢- f f , .~lT?l(A;)= =~j1A,(x)dITII(X)= ,=,lA'(x)dl~TI(x)>= rdI~l t (x)= r. 

Let A~=  X \ A ;  be the complement of A,. Then 

2.5. 
k 

~. I~l l (a~)<=k-r .  
i = 1  
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For a fixed i, p, is one to one on A,, hence IIn/A,o(p, IA,)-'II=IlnlA, II= 
IT I(A,). The part of n which lies out of A~, in AT, may reduce this quantity by at 

most IIn/Afll. Thus we have 

Hence 

U n o o 211 ~ II n/A,o (o,/A,)-'II- U n /A  ~II- IT I(A,) - IT I (A 3. 

k k 

tl,7o07'11_- > ~ t in I(A,)-InI(A31_- > r - ( k  - r) = 2 r -  k, 
i=, i=1 

and the iemma follows. 

In particular, for k = 3 and r = 2 we obtain 

2.6. 
3 

E Iln °0211-  .> 4 -  3 = 1. 
i = l  

Hence,  in order to prove 2.1 it suffices to show the existence of subsets A,,  A:, 

and A3 of Xw so that (i) and (ii) of Lemma 2.3 hold with r = 2. Let e denote the 

unit element of H (and of G). We shall present the sets A~ explicitly for 

X, = Ho U H,, and for X,  = wHo U wH,, the corresponding sets will simply be 

wA~, i = 1,2,3. 

Being a non-abelian free group on the two generators a and b, each x C H, 

x # e admits a unique representation as a reduced "word"  in the symbols a, b, 

a -l, b -~. For x C H let r(x) denote the symbol which appears in the right-hand 

side of the reduced word which represents x, and r(x) = e if x = e. (For example, 

r(a a b a-'  b-' a b-') = b-'.) Set 

A, ={x Cl io :  r ( x ) ¢  a}U{x  O H , :  r ( x ) ¢  a-l}, 

Az = {x C/40: r(x) ¢ b-'} U {x C H,: r(x) ¢ b}, 

A 3 = { x  Clio: r ( x )E{a ,b -ZI Iu{x  CHI: r(x)C{a- t ,b}} ,  

O~ is one to one on A~: since each p~ separates the points of both Go and G,, one 

has only to show that if x C A ,  n Go and y C A ,  O G,, then 0,(x) ¢ 0,(Y). For 

i = 1, recall that 

Ix, x c G,, 
p l ( x )  

t xa, x C G, 

so, if x G A~ N G,,, then p~(x) = x and r(x) = r(p , (x))~ a. If y E A, N G,, then 

r (y)  ¢ a - ' ,  and p , ( y ) =  ya. As r ( y ) ¢  a - ' ,  ya is actually the reduced representa- 

tion of p,(y)  (provided y is assumed to be a reduced word) thus r(p,(y))  = a, and 
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since r(pl(x)) ~ a it follows that pz(x) ~ p~(y). A similar argument shows that p2 

separates the points of A2. Recall that p3 acts as the identity on both Go and G~, 

thus, since if x E A3 (1 G1 and y E A3 M G2, x and y are not the same element of 

G, it follows that p3(x) ~ p3(Y)- Hence (i) of 2.3 holds. (ii) of 2.3 holds too. As a 

matter of fact, E ~  1A,(x) = 2 for all x E Xe. This is checked easily by considering 

the cases x E H0 and x E HI, and r(x)  = e, a, b, a- ' ,  b -1, separately. The details 

are left to the reader. This accomplishes our construction. 

Note that Lemma 2.3 applies to C(X)*  as well as to It(X) if the A~'s are Borel 

sets. The sets B~ = U,~ wA~, i = 1,2, 3 (one w for each coset of H)  satisfy (i) and 

(ii) of 2.3 but are not Borel sets. On the other hand, 7/(Xw)= 0 for every 

atomless r/. Note also that if H is dense in G then p is the only (up to a real 

factor) element of C(X)*  which is annihilated by the three p~'s. 

§3. Some special cases 

The space X in §2 is not connected and the maps p, are not real valued. In this 

section we present a connected example, and also show that every finite 

dimensional example can be modified in order to obtain one with real valued 

p~'s. But first we present a zero-dimensional X C R 2 with three real valued p~'s, 

two of which being the coordinate projections. I am indebted to A. O'Farrell for 

bringing this example to my attention. 

Let p be a fixed prime, and let Zp denote the compact, zero-dimensional, 

uncountable metrizable ring of p-adic integers. (See [1], pp. 85-94.) The group 

G = SL(2, Zp) of 2 x 2 n~atrices with determinant one over Zp is a compact 

metrizable zero-dimensional uncountable group; moreover, it contains a free 
group on two generators. Indeed, the elements 

a=(10  ~) and b=(12 01) 

generate such a group. (See [6], p. 97.) being zero-dimensional compact metric 

spaces, both X = G, O G, and G can be considered as a subset of the real line R. 

Moreover, since the (real valued) functions p,, i = 1,2, separate the points of X, 

we can embed X in R 2 by x ~ (p~(x), p2(x)). We have thus verified the following 

PROPOSITION. There exists a compact subset X of R 2, and an element p3 of 

C ( X )  such that p,(x, y)  = x, pz(x, y) = y and p3 form a ~-u.s.f. on X which fails to 

separate measures. Dually stated: every bounded real-valued function on X 

admits a representation 

f ( x , y ) = g , ( x ) + g 2 ( y ) + g ~ ( p 3 ( x , y ) ) ,  ( x , y ) ~ X  
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with g~ bounded real-valued on R, while {g1(x)+ g_,(y) + g3(p3(x, y)): gi E C(R)} 
is not even dense in C(X) .  

The group SO3 of orthogonal transformations on R 3 also contains a free group 

on two generators. (See [6], p. 15 for a short proof.) G = SO3 is also connected 

and 3-dimensional. We apply it to construct a connected example with real- 

valued functions. 

Let e denote the unit element of G, let Go and G1 be two disjoint copies of G, 

and let eo and el denote the element e in Go and G~ respectively. Let 

Z = Go U [0, 1] U G~ be the union of Go, the unit interval [0, 1] and G~, with the 

following identification of two pair of points: eo in Go is identified with 0 E [0, 1], 
and el E Gt is identified with 1 •[0, I]. With the exception of these two 
identifications, the union is disjoint. It follows that if G is connected then so is Z. 

The space X described in §2 can be looked upon as a closed subset of Z. Let 

Y~ = G O [0, 1] denote the union of G with [0, 1] with the following identifica- 

tions: e E G and 0 E [0, 1] are identified, and so are a E G and 1 E [0, 1]. The 

following map ~b~: Z--* Y~ is an extension of #~: X ~  G, 

x, x E Go, 
~0,(x)= x, xE[0,1], 

xa, x E Gl. 

Note that qJ~ is continuous, since the identified pair (eo, 0) in Z is mapped to 
the identified pair (e, 0) in Y~, and the identified pair (e,, 1) in Z is mapped to the 
identified pair (a, 1) in YI. 

Note also that the open interval (0, 1) in Z is mapped homeomorphically by tO~ 

onto the corresponding interval in Y,, and that no point of X = Go U G~ C Z is 

mapped into this interval, i.e., q,~-~(Y~\G)= Z \ X .  

Similarly, let I"2 be the union of G and [0, 1] with the following identifications: 

b E G and 0 E [0, 1] are identified, and so are e ~ G and 1 E [0,11. qJ2: Z - - ,  Y2 is 

then a continuous extension of pz when defined as follows: 

xb, x E Go, 

O2(x)= x, xe[0,1],  
x, X ~ Gl. 

The above remark about the behaviour of qJl on (0, 1) C Z applies also to ~b2. 

Finally, set Y~ = G, and extend p3 to a map 4t3: Z ~ Y.~ by letting 

x, x E Go, 
q, , (x)= e, x E [ 0 , 1 ] ,  

x, x E G~. 
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We claim that F = {~1, ~b2, ~b3} is a ~-u.s.f. on Z, and that /x o ~b~ -I = 0 for i = 1,2,3, 

where tz is the measure defined in §2. The second statement being trivial, we 

proceed to prove the first. The following is a decomposition of Z into disjoint 

sets: Ze = X, U (0, 1), Zw = Xw, w ~ G \ H. As in §2 it suffices to show that 2.3 

(with k = 3 and r = 2) can be applied to each Zw. For Zw, w E G \ H ,  we can 

simply adopt the sets wA~, wA2 and wA3 from §2. For Z,, we take the sets 

B1 = A1 U (0,1), B2= A2U (0,1) and B3--A3. It is evident that each x in Ze 

appears as an element in exactly two B~'s: if x E (0, 1) then x E BI and x E B2, 

and if x E X, then it follows from the properties of A~, i = 1,2, 3. Also, ~b, is one 

to one on B~: this is trivial for i =  3, and follows from the fact that ~, is an 

extension of p~, and the remarks following the definitions of ~,, i = 1,2. This 

proves that F is a ½-u.s.f. on Z. 

Let dim G denote the topological dimension of G. If dim G is finite, then 

dim Y~ is finite too. (Recall that dim SO3 = 3.) By a theorem of Ostrand ([3], see 

also [5] for a proof), there exists, for each 1 <- i _-< 3, a (2dim G + 1) -1 measure 

separating family F~ = r ~2d,,~+1 ~r,,jtj=l on Y,, with F~ C C(Y,.). The family E = 

{~, o r~.j}, 1 <- i _-< 3, 1 =</ < 2 dim G + 1, is then a (3. (2 dim G + 1)) -1 u.s.f, on Z, 

with Z connected and real-valued functions ~ o r~,j; and clearly the above- 

mentioned measure #. will be annihilated by all the mappings ~b, o z~.j. 

§4. A necessary and sufficient condition for a u.s.f, to be measure separating 

The property of being a u.s.f, is essentially a combinatorial one, while measure 

separation, in addition to being a combinatorial conditions, is also related to the 

Borel structure, and hence to the topological structure of the spaces involved. 

Hence it is not surprising that a u.s.f, may fail to be a measure separating family. 

The fact that for k = 2 the two properties are equivalent should be considered to 

be a surprising one. It is therefore also natural to expect that the condition which 

characterizes measure separating families in terms of uniform separation of 

points, will combine the combinatorial properties of a u.s.f, with the topology of 

the corresponding spaces. Before we present it we wish to obtain some better  

understanding of the combinatorial and probabilistic nature of separation of 

points and of measures. 

4.1. LEMMA. Let X and Y be measurable spaces, let p : X - ~  Y be a measur- 

able ]:unction, let IX be a real-valued measure on X, with II~ll = 1, and let 

0 < A <= 1. The ]:ollowing are then equivalent: 

(i) II p-' II >= 
(ii) I[ Y = Y+ U Y -  is the (some) Hahn decomposition of Y with respect to the 
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measure Iz op-1, then/z+(p-l(Y+))+ Iz-(p-~(Y-))>= (1 + *)/2, where tz + and tz- 
are the positive and negative parts of lz repectively. 

(iii) Let X = X ÷ U X -  be the Hahn decomposition of X w.r.t, the measure Ix. 

There exist subsets U + of X ÷ and U- of X -  such that ~+(U÷)+  t ~ - ( U - ) =  
I.L(U÷)+ II.t(U-)I>--_ (I + * )/2 and p(U+)n  p ( U - ) = ~ .  

(iv) There exists a subset V of X such that II~/vll=ll~/Vo(p/V)-'ll>-_ 
(1 + ,)/2. 

PROOF. (i)--->(ii). Assume that I1~ °P-'II----*. Then 
(a) 1 = !/.t I (X)  = l/z I ( p - ' ( Y * ) ) + I / - t  I ( P - ' ( Y - ) )  

=/z+(p- ' (y÷) )  + /z - (p- ' (Y÷))  + l z÷(p- ' (Y-)+ l z - (p- l (y - ) )  

(where !p. I = P-+ + P--, /z = /z  ÷ - / z - ,  /z-* = __+_ tz/X-*). 
And since Y = Y+ U Y- is the Hahn decomposition of Y w.r.t . /z o p-t we also 

have: 

(b) * ~ ] l t z ° p - ' ] [ = l l z ° p - ' l ( Y ) = I t z ° p - ' I ( Y + ) + I t z ° p - ' [ ( Y  ) 

= I z ° p - ' ( Y * ) - I Z  o p - ' ( y - ) =  t z ( p - ' ( y + ) ) - l z ( p - ' ( y - ) )  

=/z  +(p -'(Y+)) - / ~  -(p -'(Y+)) - (/z +(p - ' (Y-))  +/~ -(p-'(Y-))) .  

Summing (a) and ( b ) w e  obtain 2tx+(p-'(Y÷))+2~-(p- '(Y-))>= 1 + *, and (ii) 

follows. 

(ii)--> (iii). Assume (ii), and set U -~= X-*O p-'(Y-').  Then 

~÷(u÷)+ t - ( u - ) =  ~÷(p-'(Y÷)) + ~-(p- '(Y-)) >-- 0 + ,) /2 

and 

p(U÷)np(U-)=~ 

since p (U'-) C Y±. 

(iii)---> (iv). Assume (iii) and set V = U* U U . It is easy to check that (iv) 

holds. 

( iv )~( i ) .  Let V satisfy (iv). Then clearly II~/x\vll<=l-(l+,)/a= 
(1 - *)/2. Hence 

IIt~ o p-'ll => II~/vo(plV)-'ll-II~/x\ vii-- (1 + , ) / 2 - ( 1  - , ) / 2  = , ,  

and the lemma is proved. 

The following proposition follows easily from 1.1 and 4.1. 
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4.2. PROPOSITION. F is a A-u.s.f. on X if and only if the following holds: for 

every pair A = {xj}~=l and B = {zj}~=, of finite disjoint sequences in X with length 

I A I = n and I B f = k ,  there exists some p in F and subsequences A '  of A and B '  of 
B so that I A ' I + I B ' I > = ( I A I + I B I )  (1+3.)/2 a n d p ( A ' ) N p ( B ' ) = O .  

PROOF. Let F be a A-u.s.f., and let A and B be two sequences as above. 

Consider the element /~ = E ~  8 x j - E ~  8~ i of l t (X)  (where ~x is the Dirac 

measure). Then l i t  II = n + k, and by (ii) of 1.1 there exists some p in F so that 

l i t  °P '11= 3̀  II~ll. By (iii) of 4.1 there exist subsets U ÷ of A and U- of B with 

/~*(U+) + /~ - (U- )  > (n + k)(1 + 3`)/2 and p(U+)N p ( U - )  = ¢D. Set A ' =  U ÷ and 

B ' =  U-,  and we are done. 

Conversely, let A = {xj}~'=t and B = {zj}7=~ be disjoint sequences in X. Set 

~---X/=l ~xj--XT=l ~zi'~ 1~ is an element of l , (X)  with II , II = 2n. Let p E F and 

a '  C A, B '  C B be such that I a 'l + I B'I > n (1 + 3̀  ) and p ( a  ') t3 p (B') = 0 .  By 

(iii)---~ (i) of 4.1 it follows that lit  °P-Ill > 23`n. But from this it follows that in the 

process of removing pairs p(xj2)= p(zj~), at least 3̀ n pairs must remain, since 

otherwise we would have II/~ o p-tll < 23`n. This proves the proposition. 

It is the equivalent version of 4.2 which we use to define our condition. 

4.3. DEFINITION. Let (X, d) and (Yi, di), 1 < i < k, be compact metric spaces, 

and let F={p~}~=~ where p~: X---* Y~ are continuous functions. Let 3̀  be a 

positive real. F is said to be a 3`-uniformly u.s.f. (3.-U2.S.f.) if the following holds: 

For each e > 0 there exists a ~ = 3 ( e ) >  0 so that for every pair A, B of finite 

sequences in X with d(A,  B)  > e, there exists some p, in F and subsequences A '  

of A and B'  of B with 

I A ' I + I B ' I > - ( I A I + I B I ) ( I +  3`)I2 and di(p,(A') ,p~(B'))  > & 

Note that if F is merely a 3`-u.s.f., then given disjoint sequences A and B in X, 

a /i > 0 which satisfies the above always exists, but in general (~ will depend on 

the sequences A and B and not only on the distance between them. 

4.4. THEOREM. Let X, Y~, 1 <- i <-_ k, F and 3  ̀be as in 4.3. Then F is a measure 

separating family if and only if it is a u 2. s.f. More precisely : if F is a 3  ̀- u z.s.f., then 

it is a 3`-measure separating family, while if F is a A -measure separating family, 

then for every A ' < 3  ̀ it is a 3  ̀'-u 2.s.fi 

PROOF. Let F be a A-u2.s.f. Let /x ~ C(X)*  with I1 , II = 1 be given. Let S ÷ 

and S- denote the support of ,~÷ and ~ -  respectively. Without loss of generality 

we may assume that the compact sets S + and S- are disjoint. Indeed, measures/.t 
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with this property are dense in C(X)*, and since/z ~ / z  o pi is a bounded linear 

operator it suffices to prove that maxl~_,~k lltz o p?l II -> x for such measures only. 

Set e = d(S +,S-), and let 8 > 0  be the one from 4.3. For l = 1 ,2 , . . .  let 

u+ vt 

] = t  ] = t  

be elements of IdX ) so that 
I L/I x S 4- * X,'I x (i) {xib=,.,=, C {z~j:t.,=, C S-. 

(ii) /xt tends w* to ~, 

(iii) r~= al/n, and sJ= b~/k, are positive rationals with n, a common de- 

nominator for r,,t . . . .  ., r~,, and k~ a common denominator for s[,. , sty,, 

vv, r~ t,, ~ for I = 1,2, (We assume also that and I I~+l l  = . . , ~  , ,  I I ~ - I I  = z , o ,  s ,  . . . .  

II~+ll and I1~-II are rationals.) 
For l >_- 1, let At be a sequence in S ÷ whose elements are the xl's, and in which 

each x I appears a I times as an element. Then the length of At is 

lil t 

!A, != Z . I  = ,,, 1111+11 • 
i = I 

Similarly. let B+ C S- be a sequence whose elements are the s+fs, each appearing 

b~ times, with 

vt  

In, l= k, ll~-ll = Y+ bl. 
j = l  

It follows that d(A~,B~)>= e. From F being a A-u2.s.f. it follows that for each 

l_- > 1 there exists some p~ E F and subsequences A' tCAt  and B'~C B~, with 

I A '~l + I B'tl --> (n, II/z +ll + k, II/z-II) (1 + A )/2 and d+ (p+ (A 't), p, (B'3) --> 3. By passing 
to a subsequence of the l's, we may assume that the same p+ = p does the job for 

all the I's. Let V ÷ C Y~ be the limit in the Hausdorff metric on the closed subsets 

of Y, of a subsequence of the p(A',)'s. Let V-C  Y~ be the limit in the same 

metric of a further subsequence of the t9 (B~)'s. Then d~ (V+, V-)=> ~, and hence 

there exist disjoint open subsets U ± of Y~ so that V-*C U ±. It follows that for 

infinitely many l's, and without loss of generality for all l, p(A'3C U ÷ and 

p(B',) C U-. 
Hence, for all /, A '~C S ÷ fq p-;(U ÷) and B~C S- N p-~(U-). Thus 

~7(p-'(u+))~ IA',II~, ~ II~+II(z + x ) / 2  

and also 

iz ;(p-l(U-)) >- I B~l/k, >= ll/x-[{(1 + A)/2. 
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From the fact that ~7 ~ / z  ~- it follows that 

~,+(p-'(U+))>_-II~+ll(1 + A)/2 and /z-(p-1(U-))= > II~,-II(l+ A)/2. 

Hence, /z+(p-l(u+))+ tz-(p-'(U-))>= (11 ,+11 + I1 ,-II)(1 + A)/2 = (1 + A)/2 and, 
by (iii)---> (i) of 4.1, op-lll--> z, i.e., F is a )t-measure separating family. 

Conversely, assume that F is a A-measure separating family, let A ' <  A be 

given, and assume that F fails to be a A '-u2.s.f. Hence, for some e > 0, there exist 

for each l _--- 1 a pair At, Bt of finite sequences in X with d ( A ,  Bt) >-- e, so that for 

any choice of A'~C A, and B't C B, with I A',I + I n',l--> (I A, I+IB,  I)(1 + A')/2, 

lim d, (p, (A 't), p, (B'~)) = 0 

holds for all 1 =< i =< k. Set 

1 ( ) 

Then /z, ~ l,(X) and II ,ll = 1. 
By passing to a subsequence if necessary we may assume that {/z~}L~ converges 

w* to some element /z of C(X)*. From d(A,,B,)>-e it follows that I1 11 = 1. 
Since F is a A-measure separating, there exists some p~ = p  in F so that 

Iltzop-'ll_->A. By (ii) of 4.1, /z÷(p ~(Y+))+Ix (p-~(Y-))=>(I+A)/2 where 

Y+ U Y- is the Hahn decomposition of Y = Y, w.r.t, tz ° p-l. By the regularity of 

the measures p.±op-~ we can find compact subsets V -~ of Y± so that 

/z+(p- '(V+))+/z (p-'(V-))_~ (1 + A")/2, with A '<  A"< A. 

Let U-* be open subsets of Y with V-* C U -~ and d~(U +, U ) =  8 > 0. Then 

clearly also /z+(p-1(U÷))+ lz-(p-l(U-))>- > _ (1 + A")/2. It follows that for all suffi- 

ciently large l,/z~(p-1(U÷))+ izF(p-~(U ))=> (1 + A')/2 (since p-~(U*-) is open in 

X). This implies that A't= A~ N p-~(U ÷) and B~= Bt N p-~(U-) satisfy 

IA',I+IB t>=(IA, I+IB, I)(I + A')/2 while 

d,(p(A~),p(B',))>= a,(U ÷, U - ) =  6 >0 .  

This contradiction proves that F must be a A'-u2.s.f., and the theorem is proved. 

Note that from Theorem 4.4, and the fact that when F is a u.s.f, with only one 

or two elements in it then F is measure separating, it follows that every such 

u.s.f, is actually a u2.s.f. 
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